Skip to content

sgnts.base.buffer

EventBuffer dataclass

Event buffer with associated metadata.

Parameters:

Name Type Description Default
ts Union[int, None]

int, Start time of event buffer in ns

None
te Union[int, None]

int, End time of event buffer in ns

None
data Any

Any, Data of the event

None
Source code in sgnts/base/buffer.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
@dataclass
class EventBuffer:
    """Event buffer with associated metadata.

    Args:
        ts:
            int, Start time of event buffer in ns
        te:
            int, End time of event buffer in ns
        data:
            Any, Data of the event
    """

    ts: Union[int, None] = None
    te: Union[int, None] = None
    data: Any = None

    def __post_init__(self):
        if (
            not isinstance(self.ts, int)
            or not isinstance(self.te, int)
            or not (self.ts <= self.te)
        ):
            raise ValueError("ts and te must be integers and ts must be <= te")

    def __repr__(self):
        with numpy.printoptions(threshold=3, edgeitems=1):
            return "EventBuffer(ts=%d, te=%d, data=%s)" % (
                self.ts,
                self.te,
                self.data,
            )

    def __bool__(self):
        return self.data is not None

    @property
    def slice(self):
        return TSSlice(self.ts, self.te)

    @property
    def duration(self):
        return self.te - self.ts

    @property
    def is_gap(self):
        if self.data is None:
            return True
        else:
            return False

    def __contains__(self, item):
        # FIXME should this conditional actually be open from above?
        if isinstance(item, int):
            return self.ts <= item <= self.te
        else:
            return False

    def __lt__(self, item):
        if isinstance(item, int):
            return self.te < item
        elif isinstance(item, EventBuffer):
            return self.te < item.te

    def __le__(self, item):
        if isinstance(item, int):
            return self.te <= item
        elif isinstance(item, EventBuffer):
            return self.te <= item.te

    def __ge__(self, item):
        if isinstance(item, int):
            return self.ts >= item
        elif isinstance(item, EventBuffer):
            return self.te >= item.te

    def __gt__(self, item):
        if isinstance(item, int):
            return self.ts > item
        elif isinstance(item, EventBuffer):
            return self.te > item.te

EventFrame dataclass

Bases: Frame

An sgn Frame object that holds a dictionary of events.

Parameters:

Name Type Description Default
events Union[dict, None]

dict, Dictionary of EventBuffers

None
Source code in sgnts/base/buffer.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
@dataclass
class EventFrame(Frame):
    """An sgn Frame object that holds a dictionary of events.

    Args:
        events:
            dict, Dictionary of EventBuffers
    """

    events: Union[dict, None] = None

    def __post_init__(self):
        super().__post_init__()
        assert len(self.events) > 0

    def __getitem__(self, item):
        return self.events[item]

    def __iter__(self):
        # FIXME this will just iterate over event keys. Is that what we want?
        return iter(self.events)

    def __repr__(self):
        out = (
            f"EventFrame(EOS={self.EOS}, is_gap={self.is_gap}, "
            f"metadata={self.metadata}, events={{\n"
        )
        for evt, v in self.events.items():
            out += f"    {evt}: {v},\n"
        out += "}})"
        return out

SeriesBuffer dataclass

Timeseries buffer with associated metadata.

Parameters:

Name Type Description Default
offset int

int, the offset of the buffer. See Offset class for definitions.

required
sample_rate int

int, the sample rate belonging to the set of Offset.ALLOWED_RATES

required
data Optional[Union[int, Array]]

Optional[Union[int, Array]], the timeseries data or None.

None
shape tuple

tuple, the shape of the data regardless of gaps. Required if data is None or int, and represents the shape of the absent data.

(-1,)
backend type[ArrayBackend]

type[ArrayBackend], default NumpyBackend, the wrapper around array operations

NumpyBackend
Source code in sgnts/base/buffer.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
@dataclass
class SeriesBuffer:
    """Timeseries buffer with associated metadata.

    Args:
        offset:
            int, the offset of the buffer. See Offset class for definitions.
        sample_rate:
            int, the sample rate belonging to the set of Offset.ALLOWED_RATES
        data:
            Optional[Union[int, Array]], the timeseries data or None.
        shape:
            tuple, the shape of the data regardless of gaps. Required if data is None
            or int, and represents the shape of the absent data.
        backend:
            type[ArrayBackend], default NumpyBackend, the wrapper around array
            operations
    """

    offset: int
    sample_rate: int
    data: Optional[Union[int, Array]] = None
    shape: tuple = (-1,)
    backend: type[ArrayBackend] = NumpyBackend

    def __post_init__(self):
        assert isinstance(self.offset, int)
        if self.sample_rate not in Offset.ALLOWED_RATES:
            raise ValueError(
                "%s not in allowed rates %s" % (self.sample_rate, Offset.ALLOWED_RATES)
            )
        if self.data is None:
            if self.shape == (-1,):
                raise ValueError("if data is None self.shape must be given")
        elif isinstance(self.data, int) and self.data == 1:
            if self.shape == (-1,):
                raise ValueError("if data is 1 self.shape must be given")
            self.data = self.backend.ones(self.shape)
        elif isinstance(self.data, int) and self.data == 0:
            if self.shape == (-1,):
                raise ValueError("if data is 0 self.shape must be given")
            self.data = self.backend.zeros(self.shape)
        elif self.shape == (-1,):
            self.shape = self.data.shape
        else:
            if self.shape != self.data.shape:
                raise ValueError("self.shape and self.data.shape must agree")

        for t in self.shape:
            assert isinstance(t, int)

    @staticmethod
    def fromoffsetslice(
        offslice: TSSlice,
        sample_rate: int,
        data: Optional[Union[int, Array]] = None,
        channels: tuple[int, ...] = (),
    ) -> "SeriesBuffer":
        """Create a SeriesBuffer from a requested offset slice.

        Args:
            offslice:
                TSSlice, the offset slices the buffer spans
            sample_rate:
                int, the sample rate of the buffer
            data:
                Optional[Union[int, Array]], the data in the buffer
            channels:
                tuple[int, ...], the number of channels except the last dimension of the
                shape of the data, i.e., channels = data.shape[:-1]

        Returns:
            SeriesBuffer, the buffer that spans the requested offset slice
        """
        shape = channels + (
            Offset.tosamples(offslice.stop - offslice.start, sample_rate),
        )
        return SeriesBuffer(
            offset=offslice.start, sample_rate=sample_rate, data=data, shape=shape
        )

    def new(
        self,
        offslice: Optional[TSSlice] = None,
        data: Optional[Union[int, Array]] = None,
    ):
        """
        Return a new buffer from an existing one and optionally change the offsets.
        """
        return SeriesBuffer.fromoffsetslice(
            self.slice if offslice is None else offslice,
            self.sample_rate,
            data,
            self.shape[:-1],
        )

    def __repr__(self):
        with numpy.printoptions(threshold=3, edgeitems=1):
            return (
                "SeriesBuffer(offset=%d, offset_end=%d, shape=%s, sample_rate=%d,"
                " duration=%d, data=%s)"
                % (
                    self.offset,
                    self.end_offset,
                    self.shape,
                    self.sample_rate,
                    self.duration,
                    self.data,
                )
            )

    def __bool__(self):
        return self.data is not None

    def __len__(self):
        return 0 if self.data is None else len(self.data)

    def set_data(self, data: Optional[Array] = None) -> None:
        """Set the data attribute to the newly provided data.

        Args:
            data:
                Optiona[Array], the new data to set to
        """
        if data is not None and self.shape != data.shape:
            raise ValueError("Data are incompatible shapes")
        # it really isn't clear to me if this should be by reference or copy...
        self.data = data

    @property
    def tarr(self) -> Array:
        """An array of time stamps for each sample of the data in the buffer, in
        seconds.

        Returns:
            Array, the time array
        """
        return (
            self.backend.arange(self.samples) / self.sample_rate
            + self.t0 / Time.SECONDS
        )

    def __eq__(self, value: Union[SeriesBuffer, Any]) -> bool:
        # FIXME this is a bit convoluted.  In order for some of these tests to
        # be triggered strange manipulation of objects would have to occur.
        # Consider making the SeriesBuffer properties read only where possible.
        is_series_buffer = isinstance(value, SeriesBuffer)
        if not is_series_buffer:
            return False
        if not (value.shape == self.shape):
            return False
        # FIXME is this the right check? Or do we want to check dtype? Under
        # what circumstances will this check fail?
        if type(self.data) is not type(value.data):
            return False
        if isinstance(self.data, NumpyArray) and isinstance(value.data, NumpyArray):
            share_data = NumpyBackend.all(self.data == value.data)
        elif isinstance(self.data, TorchArray) and isinstance(value.data, TorchArray):
            share_data = TorchBackend.all(self.data == value.data)
        elif self.data is None and value.data is None:
            share_data = True
        else:
            # Will need to expand this conditional if/when other data types are added
            raise ValueError("invalid data object")
        share_offset = value.offset == self.offset
        share_sample_rate = value.sample_rate == self.sample_rate
        return share_data and share_offset and share_sample_rate

    @property
    def slice(self) -> TSSlice:
        """The offset slice that the buffer spans.

        Returns:
            TSSlices, the offset slice
        """
        return TSSlice(self.offset, self.end_offset)

    @property
    def noffset(self) -> int:
        """The number of offsets the buffer spans, which is the buffer's duration in
        terms of offsets.

        Returns:
            int, the offset duration
        """
        return Offset.fromsamples(self.samples, self.sample_rate)

    @property
    def t0(self) -> int:
        """The start time of the buffer, in integer nanoseconds.

        Returns:
            int, buffer start time
        """
        return Offset.offset_ref_t0 + Offset.tons(self.offset)

    @property
    def duration(self) -> int:
        """The duration of the buffer, in integer nanoseconds.

        Returns:
            int, the buffer duration
        """
        return Offset.tons(self.noffset)

    @property
    def end(self) -> int:
        """The end time of the buffer, in integer nanoseconds.

        Returns:
            int, buffer end time
        """
        return self.t0 + self.duration

    @property
    def end_offset(self) -> int:
        """The end offset of the buffer.

        Returns:
            int, buffer end offset
        """
        return self.offset + self.noffset

    @property
    def samples(self) -> int:
        """The number of samples the buffer carries.

        Return:
            int, the number of samples
        """
        return self.shape[-1]

    @property
    def is_gap(self) -> bool:
        """Whether the buffer is a gap. This is determined by whether the data is None.

        Returns:
            bool, whether the buffer is a gap
        """
        return self.data is None

    def filleddata(self, zeros_func) -> Array:
        """Fill the data with zeros if buffer is a gap, otherwise return the data.

        Args:
            zeros_func:
                the function to produce a zeros array

        Returns:
            Array, the filled data
        """
        if self.data is not None:
            return self.data
        else:
            return zeros_func(self.shape)

    def __contains__(self, item):
        # FIXME, is this what we want?
        if isinstance(item, int):
            # The end offset is not actually in the buffer hence the second "<" vs "<="
            return self.offset <= item < self.end_offset
        elif isinstance(item, SeriesBuffer):
            return (self.offset <= item.offset) and (item.end_offset <= self.end_offset)
        else:
            return False

    def __lt__(self, item):
        assert isinstance(item, SeriesBuffer)
        return self.end_offset < item.end_offset

    def __le__(self, item):
        assert isinstance(item, SeriesBuffer)
        return self.end_offset <= item.end_offset

    def __ge__(self, item):
        assert isinstance(item, SeriesBuffer)
        return self.end_offset >= item.end_offset

    def __gt__(self, item):
        assert isinstance(item, SeriesBuffer)
        return self.end_offset > item.end_offset

    def _insert(self, data: Array, offset) -> None:
        """TODO workshop the name
        Adds data from a whose slice is
        fully contained within self's into self.
        Does not do safety checks."""
        insertion_index = Offset.tosamples(
            offset - self.offset, sample_rate=self.sample_rate
        )
        # FIXME: this is a thorny issue because of how generous we are with the type
        # of data and the type of Array.  Fixing this will involve being
        # stricter about types and more careful throughout the array_ops
        # module.
        self.data[
            ..., insertion_index : insertion_index + data.shape[-1]
        ] += data  # type: ignore

    @property
    def _backend_from_data(self):
        if isinstance(self.data, NumpyArray):
            return NumpyBackend
        elif isinstance(self.data, TorchArray):
            if (
                self.data.device != TorchBackend.DEVICE
                or self.data.dtype != TorchBackend.DTYPE
            ):
                raise ValueError("TorchArray and data backends are incompatable")
            return TorchBackend
        else:
            return None

    def __add__(self, item: "SeriesBuffer") -> "SeriesBuffer":
        """Add two `SeriesBuffer`s, padding as necessary.

        Args:
            item:
                SeriesBuffer, The other component of the addition. Must be a
                SeriesBuffer, must have the same sample rate as self, and its data must
                be the same type (e.g. numpy array or pytorch Tensor)

        Returns:
            SeriesBuffer, The SeriesBuffer resulting from the addition
        """
        # Choose the correct backend
        # Handle polymorphism more smoothly in the future?
        # It's python so maybe this is the best option available
        if not isinstance(item, SeriesBuffer):
            raise TypeError("Both arguments must be of the SeriesBuffer type")
        # A bit convoluted, cases are:
        # - if both None then output gap
        # - if one None fill the gap and add with other's backend
        # - if neither None but disagree raise an error
        backend = self._backend_from_data
        if (
            (backend != item._backend_from_data)
            and (item._backend_from_data is not None)
            and (backend is not None)
        ):
            raise TypeError("Incompatible data types")
        if backend is None and item._backend_from_data is not None:
            backend = item._backend_from_data
        if self.shape[:-1] != item.shape[:-1]:
            raise ValueError("All dimensions except the padding dimension must match")
        if self.sample_rate != item.sample_rate:
            raise ValueError("Sample rates must match")
        new_buffer = self.fromoffsetslice(
            self.slice | item.slice,
            sample_rate=self.sample_rate,
            data=None,
            channels=self.shape[:-1],
        )
        if backend is None:
            return new_buffer

        new_buffer.data = new_buffer.filleddata(backend.zeros)
        self_filled_data = self.filleddata(backend.zeros)
        item_filled_data = item.filleddata(backend.zeros)

        new_buffer._insert(self_filled_data, self.offset)
        new_buffer._insert(item_filled_data, item.offset)

        return new_buffer

    def pad_buffer(
        self, off: int, data: Optional[Union[int, Array]] = None
    ) -> "SeriesBuffer":
        """Generate a buffer to pad before this buffer.

        Args:
            off:
                int, the offset to start the padding. Must be earlier than this buffer.
            data:
                Optional[Union[int, Array]], the data of the pad buffer

        Returns:
            SeriesBuffer, the pad buffer
        """
        assert off < self.offset
        return SeriesBuffer(
            offset=off,
            sample_rate=self.sample_rate,
            data=data,
            shape=self.shape[:-1]
            + (Offset.tosamples(self.offset - off, self.sample_rate),),
        )

    def sub_buffer(self, slc: TSSlice, gap: bool = False) -> "SeriesBuffer":
        """Generate a sub buffer whose offset slice is within this buffer.

        Args:
            slc:
                TSSlice, the offset slice of the sub buffer
            gap:
                bool, if True, set the sub buffer to a gap

        Returns:
            SeriesBuffer, the sub buffer
        """
        assert slc in self.slice
        startsamples, stopsamples = Offset.tosamples(
            slc.start - self.offset, self.sample_rate
        ), Offset.tosamples(slc.stop - self.offset, self.sample_rate)
        if not gap and self.data is not None and not isinstance(self.data, int):
            data = self.data[..., startsamples:stopsamples]
        else:
            data = None

        return SeriesBuffer(
            offset=slc.start,
            sample_rate=self.sample_rate,
            data=data,
            shape=self.shape[:-1] + (stopsamples - startsamples,),
        )

    def split(
        self, boundaries: Union[int, TSSlices], contiguous: bool = False
    ) -> list["SeriesBuffer"]:
        """Split the buffer according to the requested offset boundaries.

        Args:
            boundaries:
                Union[int, TSSlices], the offset boundaries to split the buffer into.
            contiguous:
                bool, if True, will generate gap buffers when there are discontinuities

        Returns:
            list[SeriesBuffer], a list of SeriesBuffers split up according to the
            offset boundaries
        """
        out = []
        if isinstance(boundaries, int):
            boundaries = TSSlices(self.slice.split(boundaries))
        if not isinstance(boundaries, TSSlices):
            raise NotImplementedError
        for slc in boundaries.slices:
            assert slc in self.slice
            out.append(self.sub_buffer(slc))
        if contiguous:
            gap_boundaries = boundaries.invert(self.slice)
            for slc in gap_boundaries.slices:
                out.append(self.sub_buffer(slc, gap=True))
        return sorted(out)

duration property

The duration of the buffer, in integer nanoseconds.

Returns:

Type Description
int

int, the buffer duration

end property

The end time of the buffer, in integer nanoseconds.

Returns:

Type Description
int

int, buffer end time

end_offset property

The end offset of the buffer.

Returns:

Type Description
int

int, buffer end offset

is_gap property

Whether the buffer is a gap. This is determined by whether the data is None.

Returns:

Type Description
bool

bool, whether the buffer is a gap

noffset property

The number of offsets the buffer spans, which is the buffer's duration in terms of offsets.

Returns:

Type Description
int

int, the offset duration

samples property

The number of samples the buffer carries.

Return

int, the number of samples

slice property

The offset slice that the buffer spans.

Returns:

Type Description
TSSlice

TSSlices, the offset slice

t0 property

The start time of the buffer, in integer nanoseconds.

Returns:

Type Description
int

int, buffer start time

tarr property

An array of time stamps for each sample of the data in the buffer, in seconds.

Returns:

Type Description
Array

Array, the time array

__add__(item)

Add two SeriesBuffers, padding as necessary.

Parameters:

Name Type Description Default
item 'SeriesBuffer'

SeriesBuffer, The other component of the addition. Must be a SeriesBuffer, must have the same sample rate as self, and its data must be the same type (e.g. numpy array or pytorch Tensor)

required

Returns:

Type Description
'SeriesBuffer'

SeriesBuffer, The SeriesBuffer resulting from the addition

Source code in sgnts/base/buffer.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def __add__(self, item: "SeriesBuffer") -> "SeriesBuffer":
    """Add two `SeriesBuffer`s, padding as necessary.

    Args:
        item:
            SeriesBuffer, The other component of the addition. Must be a
            SeriesBuffer, must have the same sample rate as self, and its data must
            be the same type (e.g. numpy array or pytorch Tensor)

    Returns:
        SeriesBuffer, The SeriesBuffer resulting from the addition
    """
    # Choose the correct backend
    # Handle polymorphism more smoothly in the future?
    # It's python so maybe this is the best option available
    if not isinstance(item, SeriesBuffer):
        raise TypeError("Both arguments must be of the SeriesBuffer type")
    # A bit convoluted, cases are:
    # - if both None then output gap
    # - if one None fill the gap and add with other's backend
    # - if neither None but disagree raise an error
    backend = self._backend_from_data
    if (
        (backend != item._backend_from_data)
        and (item._backend_from_data is not None)
        and (backend is not None)
    ):
        raise TypeError("Incompatible data types")
    if backend is None and item._backend_from_data is not None:
        backend = item._backend_from_data
    if self.shape[:-1] != item.shape[:-1]:
        raise ValueError("All dimensions except the padding dimension must match")
    if self.sample_rate != item.sample_rate:
        raise ValueError("Sample rates must match")
    new_buffer = self.fromoffsetslice(
        self.slice | item.slice,
        sample_rate=self.sample_rate,
        data=None,
        channels=self.shape[:-1],
    )
    if backend is None:
        return new_buffer

    new_buffer.data = new_buffer.filleddata(backend.zeros)
    self_filled_data = self.filleddata(backend.zeros)
    item_filled_data = item.filleddata(backend.zeros)

    new_buffer._insert(self_filled_data, self.offset)
    new_buffer._insert(item_filled_data, item.offset)

    return new_buffer

filleddata(zeros_func)

Fill the data with zeros if buffer is a gap, otherwise return the data.

Parameters:

Name Type Description Default
zeros_func

the function to produce a zeros array

required

Returns:

Type Description
Array

Array, the filled data

Source code in sgnts/base/buffer.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def filleddata(self, zeros_func) -> Array:
    """Fill the data with zeros if buffer is a gap, otherwise return the data.

    Args:
        zeros_func:
            the function to produce a zeros array

    Returns:
        Array, the filled data
    """
    if self.data is not None:
        return self.data
    else:
        return zeros_func(self.shape)

fromoffsetslice(offslice, sample_rate, data=None, channels=()) staticmethod

Create a SeriesBuffer from a requested offset slice.

Parameters:

Name Type Description Default
offslice TSSlice

TSSlice, the offset slices the buffer spans

required
sample_rate int

int, the sample rate of the buffer

required
data Optional[Union[int, Array]]

Optional[Union[int, Array]], the data in the buffer

None
channels tuple[int, ...]

tuple[int, ...], the number of channels except the last dimension of the shape of the data, i.e., channels = data.shape[:-1]

()

Returns:

Type Description
'SeriesBuffer'

SeriesBuffer, the buffer that spans the requested offset slice

Source code in sgnts/base/buffer.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
@staticmethod
def fromoffsetslice(
    offslice: TSSlice,
    sample_rate: int,
    data: Optional[Union[int, Array]] = None,
    channels: tuple[int, ...] = (),
) -> "SeriesBuffer":
    """Create a SeriesBuffer from a requested offset slice.

    Args:
        offslice:
            TSSlice, the offset slices the buffer spans
        sample_rate:
            int, the sample rate of the buffer
        data:
            Optional[Union[int, Array]], the data in the buffer
        channels:
            tuple[int, ...], the number of channels except the last dimension of the
            shape of the data, i.e., channels = data.shape[:-1]

    Returns:
        SeriesBuffer, the buffer that spans the requested offset slice
    """
    shape = channels + (
        Offset.tosamples(offslice.stop - offslice.start, sample_rate),
    )
    return SeriesBuffer(
        offset=offslice.start, sample_rate=sample_rate, data=data, shape=shape
    )

new(offslice=None, data=None)

Return a new buffer from an existing one and optionally change the offsets.

Source code in sgnts/base/buffer.py
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def new(
    self,
    offslice: Optional[TSSlice] = None,
    data: Optional[Union[int, Array]] = None,
):
    """
    Return a new buffer from an existing one and optionally change the offsets.
    """
    return SeriesBuffer.fromoffsetslice(
        self.slice if offslice is None else offslice,
        self.sample_rate,
        data,
        self.shape[:-1],
    )

pad_buffer(off, data=None)

Generate a buffer to pad before this buffer.

Parameters:

Name Type Description Default
off int

int, the offset to start the padding. Must be earlier than this buffer.

required
data Optional[Union[int, Array]]

Optional[Union[int, Array]], the data of the pad buffer

None

Returns:

Type Description
'SeriesBuffer'

SeriesBuffer, the pad buffer

Source code in sgnts/base/buffer.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
def pad_buffer(
    self, off: int, data: Optional[Union[int, Array]] = None
) -> "SeriesBuffer":
    """Generate a buffer to pad before this buffer.

    Args:
        off:
            int, the offset to start the padding. Must be earlier than this buffer.
        data:
            Optional[Union[int, Array]], the data of the pad buffer

    Returns:
        SeriesBuffer, the pad buffer
    """
    assert off < self.offset
    return SeriesBuffer(
        offset=off,
        sample_rate=self.sample_rate,
        data=data,
        shape=self.shape[:-1]
        + (Offset.tosamples(self.offset - off, self.sample_rate),),
    )

set_data(data=None)

Set the data attribute to the newly provided data.

Parameters:

Name Type Description Default
data Optional[Array]

Optiona[Array], the new data to set to

None
Source code in sgnts/base/buffer.py
255
256
257
258
259
260
261
262
263
264
265
def set_data(self, data: Optional[Array] = None) -> None:
    """Set the data attribute to the newly provided data.

    Args:
        data:
            Optiona[Array], the new data to set to
    """
    if data is not None and self.shape != data.shape:
        raise ValueError("Data are incompatible shapes")
    # it really isn't clear to me if this should be by reference or copy...
    self.data = data

split(boundaries, contiguous=False)

Split the buffer according to the requested offset boundaries.

Parameters:

Name Type Description Default
boundaries Union[int, TSSlices]

Union[int, TSSlices], the offset boundaries to split the buffer into.

required
contiguous bool

bool, if True, will generate gap buffers when there are discontinuities

False

Returns:

Type Description
list['SeriesBuffer']

list[SeriesBuffer], a list of SeriesBuffers split up according to the

list['SeriesBuffer']

offset boundaries

Source code in sgnts/base/buffer.py
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def split(
    self, boundaries: Union[int, TSSlices], contiguous: bool = False
) -> list["SeriesBuffer"]:
    """Split the buffer according to the requested offset boundaries.

    Args:
        boundaries:
            Union[int, TSSlices], the offset boundaries to split the buffer into.
        contiguous:
            bool, if True, will generate gap buffers when there are discontinuities

    Returns:
        list[SeriesBuffer], a list of SeriesBuffers split up according to the
        offset boundaries
    """
    out = []
    if isinstance(boundaries, int):
        boundaries = TSSlices(self.slice.split(boundaries))
    if not isinstance(boundaries, TSSlices):
        raise NotImplementedError
    for slc in boundaries.slices:
        assert slc in self.slice
        out.append(self.sub_buffer(slc))
    if contiguous:
        gap_boundaries = boundaries.invert(self.slice)
        for slc in gap_boundaries.slices:
            out.append(self.sub_buffer(slc, gap=True))
    return sorted(out)

sub_buffer(slc, gap=False)

Generate a sub buffer whose offset slice is within this buffer.

Parameters:

Name Type Description Default
slc TSSlice

TSSlice, the offset slice of the sub buffer

required
gap bool

bool, if True, set the sub buffer to a gap

False

Returns:

Type Description
'SeriesBuffer'

SeriesBuffer, the sub buffer

Source code in sgnts/base/buffer.py
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def sub_buffer(self, slc: TSSlice, gap: bool = False) -> "SeriesBuffer":
    """Generate a sub buffer whose offset slice is within this buffer.

    Args:
        slc:
            TSSlice, the offset slice of the sub buffer
        gap:
            bool, if True, set the sub buffer to a gap

    Returns:
        SeriesBuffer, the sub buffer
    """
    assert slc in self.slice
    startsamples, stopsamples = Offset.tosamples(
        slc.start - self.offset, self.sample_rate
    ), Offset.tosamples(slc.stop - self.offset, self.sample_rate)
    if not gap and self.data is not None and not isinstance(self.data, int):
        data = self.data[..., startsamples:stopsamples]
    else:
        data = None

    return SeriesBuffer(
        offset=slc.start,
        sample_rate=self.sample_rate,
        data=data,
        shape=self.shape[:-1] + (stopsamples - startsamples,),
    )

TSFrame dataclass

Bases: Frame

An sgn Frame object that holds a list of buffers

Parameters:

Name Type Description Default
buffers list[SeriesBuffer]

list[SeriesBuffer], An iterable of SeriesBuffers

list()
Source code in sgnts/base/buffer.py
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
@dataclass
class TSFrame(Frame):
    """An sgn Frame object that holds a list of buffers

    Args:
        buffers:
            list[SeriesBuffer], An iterable of SeriesBuffers
    """

    buffers: list[SeriesBuffer] = field(default_factory=list)

    def __post_init__(self):
        super().__post_init__()
        assert len(self.buffers) > 0
        self.__sanity_check(self.buffers)
        self.is_gap = all([b.is_gap for b in self.buffers])

    def __getitem__(self, item):
        return self.buffers[item]

    def __iter__(self):
        return iter(self.buffers)

    def __repr__(self):
        out = (
            f"TSFrame(EOS={self.EOS}, is_gap={self.is_gap}, "
            f"metadata={self.metadata}, buffers=[\n"
        )
        for buf in self:
            out += f"    {buf},\n"
        out += "])"
        return out

    def __len__(self):
        return len(self.buffers)

    def __sanity_check(self, bufs: list[SeriesBuffer]) -> None:
        """Sanity check that the buffers don't overlap nor have discontinuities.

        Args:
            bufs:
                list[SeriesBuffer], the buffers to perform the sanity check on
        """
        # FIXME: is there a smart way using TSSlics?
        if len(bufs) > 1:
            slices = [buf.slice for buf in bufs]
            off0 = slices[0].stop
            for sl in slices[1:]:
                assert off0 == sl.start
                off0 = sl.stop

    def set_buffers(self, bufs: list[SeriesBuffer]) -> None:
        """Set the buffers attribute to the bufs provided.

        Args:
            bufs:
                list[SeriesBuffers], the list of buffers to set to
        """
        self.__sanity_check(bufs)
        self.buffers = bufs

    @property
    def offset(self) -> int:
        """The offset of the TSFrame, which is the offset of the first buffer.

        Returns:
            int, the offset of the TSFrame
        """
        return self.buffers[0].offset

    @property
    def end_offset(self) -> int:
        """The end offset of the TSFrame, which is the end offset of the last buffer.

        Returns:
            int, the end offset of the TSFrame
        """
        return self.buffers[-1].end_offset

    @property
    def slice(self) -> TSSlice:
        """The offset slice of the TSFrame.

        Returns:
            TSSclie, the offset slice of the TSFrame
        """
        return TSSlice(self.offset, self.end_offset)

    @property
    def shape(self) -> tuple[int, ...]:
        """The shape of the TSFrame.

        Returns:
            tuple[int, ...], the shape of the TSFrame
        """
        return self.buffers[0].shape[:-1] + (sum(b.samples for b in self.buffers),)

    @property
    def sample_rate(self) -> int:
        """The sample rate of the TSFrame.

        Returns:
            int, the sample rate
        """
        return self.buffers[0].sample_rate

    @classmethod
    def from_buffer_kwargs(cls, **kwargs):
        """A short hand for the following:

        >>> buf = SeriesBuffer(**kwargs)
        >>> frame = TSFrame(buffers=[buf])
        """
        return cls(buffers=[SeriesBuffer(**kwargs)])

    def __next__(self):
        """
        return a new empty frame that is like the current one but advanced to
        the next offset, e.g.,

        >>> frame = TSFrame.from_buffer_kwargs(offset=0,
                        sample_rate=2048, shape=(2048,))
        >>> print (frame)

                SeriesBuffer(offset=0, offset_end=16384, shape=(2048,),
                             sample_rate=2048, duration=1000000000, data=None)
        >>> print (next(frame))
        """
        return self.from_buffer_kwargs(
            offset=self.end_offset, sample_rate=self.sample_rate, shape=self.shape
        )

end_offset property

The end offset of the TSFrame, which is the end offset of the last buffer.

Returns:

Type Description
int

int, the end offset of the TSFrame

offset property

The offset of the TSFrame, which is the offset of the first buffer.

Returns:

Type Description
int

int, the offset of the TSFrame

sample_rate property

The sample rate of the TSFrame.

Returns:

Type Description
int

int, the sample rate

shape property

The shape of the TSFrame.

Returns:

Type Description
tuple[int, ...]

tuple[int, ...], the shape of the TSFrame

slice property

The offset slice of the TSFrame.

Returns:

Type Description
TSSlice

TSSclie, the offset slice of the TSFrame

__next__()

return a new empty frame that is like the current one but advanced to the next offset, e.g.,

frame = TSFrame.from_buffer_kwargs(offset=0, sample_rate=2048, shape=(2048,)) print (frame)

    SeriesBuffer(offset=0, offset_end=16384, shape=(2048,),
                 sample_rate=2048, duration=1000000000, data=None)

print (next(frame))

Source code in sgnts/base/buffer.py
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
def __next__(self):
    """
    return a new empty frame that is like the current one but advanced to
    the next offset, e.g.,

    >>> frame = TSFrame.from_buffer_kwargs(offset=0,
                    sample_rate=2048, shape=(2048,))
    >>> print (frame)

            SeriesBuffer(offset=0, offset_end=16384, shape=(2048,),
                         sample_rate=2048, duration=1000000000, data=None)
    >>> print (next(frame))
    """
    return self.from_buffer_kwargs(
        offset=self.end_offset, sample_rate=self.sample_rate, shape=self.shape
    )

__sanity_check(bufs)

Sanity check that the buffers don't overlap nor have discontinuities.

Parameters:

Name Type Description Default
bufs list[SeriesBuffer]

list[SeriesBuffer], the buffers to perform the sanity check on

required
Source code in sgnts/base/buffer.py
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def __sanity_check(self, bufs: list[SeriesBuffer]) -> None:
    """Sanity check that the buffers don't overlap nor have discontinuities.

    Args:
        bufs:
            list[SeriesBuffer], the buffers to perform the sanity check on
    """
    # FIXME: is there a smart way using TSSlics?
    if len(bufs) > 1:
        slices = [buf.slice for buf in bufs]
        off0 = slices[0].stop
        for sl in slices[1:]:
            assert off0 == sl.start
            off0 = sl.stop

from_buffer_kwargs(**kwargs) classmethod

A short hand for the following:

buf = SeriesBuffer(**kwargs) frame = TSFrame(buffers=[buf])

Source code in sgnts/base/buffer.py
689
690
691
692
693
694
695
696
@classmethod
def from_buffer_kwargs(cls, **kwargs):
    """A short hand for the following:

    >>> buf = SeriesBuffer(**kwargs)
    >>> frame = TSFrame(buffers=[buf])
    """
    return cls(buffers=[SeriesBuffer(**kwargs)])

set_buffers(bufs)

Set the buffers attribute to the bufs provided.

Parameters:

Name Type Description Default
bufs list[SeriesBuffer]

list[SeriesBuffers], the list of buffers to set to

required
Source code in sgnts/base/buffer.py
634
635
636
637
638
639
640
641
642
def set_buffers(self, bufs: list[SeriesBuffer]) -> None:
    """Set the buffers attribute to the bufs provided.

    Args:
        bufs:
            list[SeriesBuffers], the list of buffers to set to
    """
    self.__sanity_check(bufs)
    self.buffers = bufs